Network Computing and Efficient Algorithms Topic 2: Distributed Computing Introduction

Xiang-Yang Li and Xiaohua Xu

School of Computer Science and Technology University of Science and Technology of China (USTC)

September 1, 2021

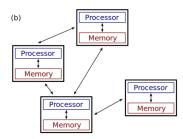
(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

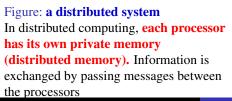
Distributed Computing and Distributed System

• The Rise of Distributed Systems

- Computer hardware prices are falling and power increasing.
- Network connectivity is increasing.
- It is easy to connect hardware together.
- Distributed System hardware or software components located at networked computers communicate and coordinate their actions only by message passing.
 Distributed System = Distributed hardware + Distributed control + Distributed data
- **Distributed Computing** a field of computer science that studies distributed systems. Its a kind of science that divides the engineering data which needs a lot of calculation into small pieces, calculates by several computers separately, and unifies the results to get the data conclusion after uploading the calculation results.

Characterizing Distributed Systems


• Multiple Autonomous Computers


- Each consisting of CPUs, local memory, stable storage, I/O paths connecting to the environment
- Geographically Distributed
- Interconnections
 - some I/O paths interconnect computers that talk to each other
- Shared State
 - systems cooperate to maintain shared state
 - maintaining global invariants requires correct and coordinated operation of multiple computers.

Outline

Parallel and distributed computing

"concurrent computing", "parallel computing", and "distributed computing" have a lot of overlaps.

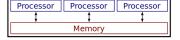


Figure: a parallel system In parallel computing, all processors may have access to a shared memory to exchange information between processors.

• □ > • □ > • □ > • □ > • □ >

1960s

- Mainframe IBM System/360
 - Communication is rare
 - Perform large computation/processing
- Study of concurrent process
- ARPANET 1969
 - BBN Technologies
 - Earliest example of Distributed Computing
 - Predecessor of the Internet

伺き イヨト イヨ

1970s

- ARPANET email
 - Pioneer large scale distributed application
 - Most success apps for ARPANET
- Local-area Network Ethernet
- DCS (Distributed Computing System)
 - Create system that interconnect minicomputers
 - Provide resource sharing, fault tolerant
 - Put in operation at 1973
- Creeper & Reaper 1971
 - 1st distributed computing programs
 - 1st computer virus

伺き イヨト イヨ

1980s

- Internet, Fidonet, Usenet started to explode
- University & Research Insititude branched out DC as own branch
- Symposium on Principles of Distributed Computing (PODC) 1982 & International Symposium on Distributed Computing (DISC) 1985
- Parallel architectures & message passing interface
- DEC System Research Center 1988
- 1st distributed computing project

(4 同) (4 回) (4 回)

1990s - Present

- Distribute.net 1997
 - 1st project that use internet to distribute data
 - User download program instead of email
- Advanced in technology
 - Grid architecture
 - Web-Services
 - Cloud computing
- Google optimize search algorithm through DC message passing interface
- SETI@Home
 - Popularized DC
 - Analyze radio signals
 - Prove that DC works

同下 イヨト イヨ

Outline

Current Trends Of Distributed Computing

Grid Computing

• Allow variety of geographically distributed resources to be shared and aggregate

Grid Broker:

- Negotiate for access costs
- Schedule, deploy tasks and collect final results

Benefits:

- Transparent
- On-demand access
- Improved productivity
- Extra resources to solve problem

• Example:

- Financial Organization Collaboration for computational power
- Online Multiplayer Game Dedicated game server in various country
- Weather Forecasting Require high data and computational power

Current Trends Of Distributed Computing

Mobile & Ubiquitous Computing

- Mobile computing enable:
 - Use of a computing device even though they are moving around
 - Can continue access the resources in their home such as printers.
- Known as location-aware/context-aware computing
- Ubiquitous computing:
 - new genre of DC that permeates user's life
 - Enable devices and computers become helpful but invisible force to fulfilled user needs
 - Example: remotely control appliances in home through user smart phone. The appliances will notify the user when job done

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

10/11

Current Trends Of Distributed Computing

Cloud Computing

- A model for enabling convenient, on-demand network access to a shared pool of configurable computing resources
- Clustering a set of computers to provide the scale and performance for cloud

Benefits:

- Flexible and storage of resources
- Allow wide range of resource sharing

• Advantages (for organizations):

- Flexible response
- Reliability
- Cost reduction
- A new paradigm: Edge Computing, which deploys computing resources close to users and data source.

11/11